当前位置:首页 > 行业资讯 > 一文快速搞懂数字孪生的本质(上)

一文快速搞懂数字孪生的本质(上)

2年前 (2023-03-24)行业资讯

在信息领域,一个概念有多种解释已是司空见惯的事情。不过大多概念虽然在开始出现时含义模糊,定义不明,但经过一段时间讨论和沉淀之后,会逐渐形成一致的看法,比如云计算。而数字孪生(DT)很有意思,它一开始的时候,含义还比较明确,但随着研究的深入,定义和内涵却越来越模糊。


另外,很多概念,虽然有多种不同的定义和解释,但大致的区别都在于要么看问题的角度和侧重点不同,要么解释的详细程度不同,要么文字表述方式不同,而概念本身所指向的事物主体却是确定的。像数字孪生(DT)这样,不同的定义指向不同的主体,却不多见。


今天再来谈谈数字孪生,希望把它通俗化的解释清楚,一定要看完。


百度这么定义数字孪生:


数字孪生是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。数字孪生是一种超越现实的概念,可以被视为一个或多个重要的、彼此依赖的装备系统的数字映射系统。


这个定义把数字孪生当成了仿真过程。


工信部标准化院这么定义数字孪生:


数字孪生是以数字化方式创建物理实体的虚拟实体,借助历史数据、实时数据、以及算法模型等,模拟、验证、预测、控制物理实体全生命周期过程的技术手段。


这个定义把数字孪生看成是虚拟实体,并讲了这个虚拟实体能干点什么。


从今年开始接触数字孪生这个概念直到写这篇文章之前,我已经被数字孪生这个概念搞凌乱了,如果你是一个较真的人,那估计跟我的感觉也差不多,而要搞清楚一个概念的本质,还是要回到原点,看看它是怎么出现和发展的。


DT一词,业界一般认为,是由密西根大学MichaelGrieves教授于2002年针对产品全生命周期管理(PLM)提出的一个概念,当初并不叫Digital Twin,而是叫镜像空间模型 (Mirrored Space Model, MSM),后来NASA的John Vickers将其命名为Digital Twin。其模型的属性是很清楚的,尽管当时没有引起太多关注,却也没有什么歧义。


DT就是一个数字化的模型。


但随着NASA将其引入《NASA空间技术路线图》,DT的含义发生了重要的变化。NASA给出的解释是这样的:DT是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。


DT的主体变成了仿真。


还是这个报告,又很明确地指出,NASA的Digital Twin就是“基于仿真的系统工程”(Simulation-Based Systems Engineering)。


DT的主体又变成了系统工程。


为了方便理解,下图示意了跟数字孪生相关的各个部分及其关系:



DT译为数字孪生,也就意味着,默认了DT是指模型这一事实,并且不包含物理系统。因为孪生指的是双胞胎中的一个,显然不包含所对应的物理系统本身。


仿真是模型的应用,是动作,显然跟物理对象无法形成孪生的对等概念,因此,比较严谨的DT的定义应该就是指模型。


我比较喜欢北京航空航天大学张霖教授的定义:


数字孪生是物理对象的数字模型,该模型可以通过接收来自物理对象的数据而实时演化,从而与物理对象在全生命周期保持一致。基于数字孪生可进行分析、预测、诊断、训练等(即仿真),并将仿真结果反馈给物理对象,从而帮助对物理对象进行优化和决策。


物理对象、数字孪生以及基于数字孪生的仿真及反馈一起构成一个信息物理系统 (cyberphysical systems)。面向数字孪生全生命周期(构建、演化、评估、管理、使用)的技术称为数字孪生技术(DigitalTwin Technology)。


但有了准确的定义并不代表你就理解它,人们对概念的困惑往往源于“见树木不见森林”,每个词都明白,放在一起就糊涂了。人们会问:没有数字孪生也可以做模型,它有什么特殊性?没有数字孪生也可以做预测(即仿真)啊?为什么数字孪生要提全生命周期?


还有个更严重的问题是:对学术界来说,原理清楚就清楚了;但对企业界来说,则需要把创造价值的逻辑讲清楚。讲不清楚价值,讲不清楚场景和案例,就是没有道理,因为企业界是需要真金白银投入进去的。


首先,数字孪生跟仿真有什么区别?


仿真是将包含了确定性规律和完整机理的模型转化成软件的方式来模拟物理世界的一种技术。只要模型正确,并拥有了完整的输入信息和环境数据,就基本能够正确地反映物理世界的特性和参数。如果说建模是将我们对物理世界或问题理解的模型化,那么仿真就是验证和确认理解的正确性。


仿真的基础是模型,既然数字孪生等于模型,那数字孪生就是仿真的前提,你只有通过模型(即数字孪生)精确的刻画出物理实体,也即对物理实体的准确抽象,仿真才能逼真的模拟物理世界,下图是一个仿真示意,但这个仿真的基础全是数据模型。


制造业的模型大多是指物理建模或几何建模,其仿真跟建模一般是两个独立的过程,仿真是验证你的模型跟某个物理对象的运作机理是否符合,我们所在的信息技术行业一般只提建模,不提仿真,但其实我们也有仿真,只是我们把它叫作模型验证,比如你会输入各种数据和条件,然后验证模型输出是否合理。


只是制造业在仿真出现不合理的结果时,更多怀疑的是输入数据的问题,模型设置的问题等等,很少去怀疑模型本身的准确性,我想大概的原因是因为物理模型、几何模型大多时候是正确的吧,至少比纯粹的相关关系来得靠谱。


比如你发射卫星依据的是牛顿的三大定律,你在做仿真的时候如果出现了问题,首先怀疑的应该是发射的各种输入参数是否出现了问题,仿真的环境是否不符合模型的约束等等,而不是怀疑牛顿三大定律出现了问题,因为物理模型是有因果律保证的。


而信息行业的建模验证一旦发现不符合预期的结果,首先怀疑的往往是模型本身,因为行为建模更多依赖的是运行数据和选择的算法,而这些数据和算法出现问题的可能性很大,比如出现过拟合、欠拟合等问题。


其次,数字孪生跟传统的建模有什么区别?


关于这个问题我以前非常纠结,觉得数字孪生就是忽悠的代名词,因为对于我所处的信息行业来讲,基于数据来进行机器学习建模是太平常的事情。


但信息行业的机器学习建模理念限制了自己对其他行业传统建模的理解,其实传统行业如制造业的建模,大多不是什么数据驱动,也少有提相关关系的。


那么,什么是建模?


免责声明:

本文转载自与数据同行  张新厂,版权归原作者所有,如若侵权请联系我们进行删除!

易知微以自主研发的EasyV数字孪生可视化搭建平台为核心,结合WebGL、3D游戏引擎、GIS、BIM、CIM等技术,协同各个行业的生态伙伴,围绕着数字孪生技术、数字驾驶舱和行业应用,共同建设数字增强世界,帮助客户实现数字化管理,加速数字化转型。

易知微已经为3000+ 客户提供数字孪生可视化平台和应用,覆盖智慧楼宇、智慧园区、智慧城市、数字政府、数字乡村、智慧文旅、工业互联网等众多行业领域,包括国家电网、移动云、中交建、中铁建、融创、云上贵州、厦门象屿、天津火箭、上海电视台、金华防汛大脑、良渚古城遗址公园、李宁、浙江大学等典型案例!

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。