当前,数字孪生的各种工具、平台和解决方案如同雨后春笋般涌现,试图掀起数字孪生应用的新高潮。然而,一些企业并未真正有实质性地投入数字孪生,只是跟风蹭热度,以达到制造影响力,实现融资的目的。那么,到底应当如何理解数字孪生?数字孪生有哪些关键使能技术?数字孪生的典型应用案例有哪些?数字孪生应当如何落地?本文将一一阐述。 实际上,整体的行业感知是,数字孪生应用仍处于非常初级的阶段,规模化、成熟化、商业化地应用数字孪生仍有很长一段路要走。那么,到底应当如何理解数字孪生?数字孪生有哪些关键使能技术?数字孪生的典型应用案例有哪些?数字孪生应当如何落地?本文将一一阐述。
中国工程院李培根院士认为【1】,数字孪生的关键在于和物理生命体的“共生”,所谓共生就是全生命周期,数字孪生体是和物理实体应联系在一起。数字孪生体是描述物理对象在其全生命周期中与其系统动态过程“共生” 的数字化模型。数字孪生模型的信息包括几何、物理、环境、过程。笔者认为,数字孪生是一个伴随着多种技术不断发展的,一个长期的、综合的、动态的、不断进化的过程。鉴于当下人们对于数字孪生还存在一些模糊认识,甚至误解,因而有必要重新认识数字孪生:1、数字孪生不只是几何的,更是物理的【2】。虽然数字孪生体包含对象的几何信息,但真正显示数字孪生意义的是其物理信息,如产品在运行过程中的状态,物理过程的仿真等。
2、数字孪生不只是静态的,更是动态的【2】。数字孪生的意义本来就不是基于处理静态问题。产品的运行过程都是动态的,只有在对动态问题更深刻认识并施于相应控制,这才是数字孪生最重要的意义所在。
3、数字孪生不仅是对象的,更是环境的、系统的【2】。很多人尚未意识到,数字孪生技术可以仿真人在实际问题中感知不到的某些环境。
4、数字孪生不只是针对产品,还有针对使用者的【2】。例如,除了汽车的数字孪生模型,还需建立驾驶者数字孪生模型,以便在困难情况下基于特定的驾驶者行为反应,能使驾车效果进一步微调。
5、数字孪生数据不只是产生在设计中,且产生在产品全生命周期内【2】。孪生数据不仅产生于产品的设计,而且在产品的制造、运行、维护等全生命周期过程中,都不断地产生孪生数据。
6、一个物理实体不是仅对应一个数字孪生体,可能需要多个从不同侧面或视角描述的数字孪生体【2】。例如,一台机床加工时的振动变形情况、热变形情况、刀具与工件相互作用的情况,需要不同的数字孪生模型进行描述。
7、不同的建模者从某一个特定视角描述一个物理实体的数字孪生模型似乎应该是一样的,但实际上可能有很大差异【2】。一个物理实体可能对应多个数字孪生体。差异不仅是模型的表达形式,更重要的是孪生数据的粒度。
8、数字孪生的关键不仅在于孪生数据的粒度,更在于孪生数据的特别关联【2】。请注意,这里不只是满足于收集的数据更多更细,而且要把这些数据融合起来解决问题。这里融合是关键,意指数据的关联。数据之间缺乏关联,再多再细亦枉然。
9、数字孪生尚无固定的技术体系、模式和方法。到目前为止,数字孪生体的构造方式五花八门【2】。反映物理实体的各种数字模型似乎均可视为数字孪生模型。尽管如此,未来关于数字孪生建模的规律与方法还需众多的实践者去完善和丰富。
10、数字孪生体不能只是物理实体的镜像,而是与物理实体共生【2】。在产品设计开发阶段,数字孪生体是物理实体在“孕育”阶段的“胚胎”。在物理实体系统的运行过程中,各种过程数据又不断地丰富数字孪生模型。在产品运行过程中,孪生模型对获得的数据进行分析或仿真而获得的衍生数据反过来又能够优化控制产品的运行。所以“共生”发生在产品的全生命周期。
11、数字孪生不能只是物理实体的数字表达,它应该是“物理生命体”的数字化描述【2】。“物理生命体”是指“孕育”过程(即实体的设计开发过程)和服役过程(运行、使用)中的物理实体(如产品或装备)。数字孪生体是“物理生命体”在其服役和孕育过程中的数字化模型。
12、数字孪生模型应该先于实物对象产生。这是由于在工业上,研发设计阶段的模型构建是产品全生命周期的起点,目的在于生产出与模型一致的物理产品,要求先有数字模型后有物理实体。
13、数字孪生不仅是可视化。可视化只是数字孪生的呈现,最终还要看数字孪生的真正用途,例如通过对数字孪生模型进行模拟、预测,实现物理实体的运作和优化等。
总之,数字孪生并不是一种单元的数字化技术,而是在多种使能技术迅速发展和交叉融合基础上,通过构建物理实体所对应的数字孪生模型,并对数字孪生模型进行可视化、调试、体验、分析与优化,从而提升物理实体性能和运行绩效的综合性技术策略,是企业推进数字化转型的核心战略举措之一。
在数字经济时代,数字孪生作为实现各行各业智能化、数字化的重要手段之一,受到了各方的广泛重视。随着各项关键使能技术的不断发展,数字孪生的应用价值有望得到进一步释放。这些关键使能技术包括建模、渲染、仿真、物联网、虚拟调试、可视化等,他们的蓬勃发展与交叉融合,极大地推动了数字孪生的深入应用。
其中,建模技术【3】是指利用数字化设计技术创建现实世界中的物理实体。从早期的二维设计发展到三维建模,从三维线框造型进化到三维实体造型、特征造型,数字化设计技术产生了诸如直接建模、同步建模、混合建模等技术,以及面向建筑与施工行业的BIM技术。采用数字化设计技术建立的模型,往往包括了物理实体的各种属性,如几何形状、装配、运动、材料、制造等属性。
渲染技术是指利用三维制作软件将制作的模型经过纹理、绑定、动画、灯光,然后通过渲染得到模型和动画的最终显示效果。按照渲染模式,主要分为离线渲染和实时渲染两种类别。离线渲染是在渲染前将图像的计算和分析完成,然后将结果输出到屏幕上,这种渲染方式由于可以在离线服务器上进行,因此可以处理大量数据,通常说的CPU渲染、GPU渲染都属于离线渲染;实时渲染是指在实时交互过程中,将图像实时渲染到屏幕上,这种方式需要对图像进行实时计算和处理,因此对计算机和图形处理器的性能要求比较高。目前渲染技术在游戏、影视动画、教育、建筑、视觉可视化等行业得到广泛应用。
仿真技术是企业实现数字孪生应用的重要支撑技术之一。通过对物理现象的精确模拟,仿真技术在数字孪生中被用于预测和优化。仿真技术种类繁多,涵盖了多个学科、多个领域的知识和经验。从早期的有限元分析到对流场、热场、电磁场等多个物理场的仿真,对铸造、注塑、焊接、冲压、挤压、增材制造和复合材料制造等制造工艺的仿真,对碰撞、燃烧、爆炸、冲击、跌落等各种物理现象的仿真,以及疲劳分析、可靠性分析、振动分析等均有涉猎。
物联网技术具有知识提取的能力,有助于建立一个共享和互联各种资源的数字孪生。物联网通过RFID、二维码、传感器、全球定位系统(GPS)、激光扫描仪等数据采集设备,实时获取物理实体诸如声音、光、热、电、力学、化学、生物学和位置等数据信息。具体在生产制造环节,借助物联网技术可以展现生产过程的各种数据,包括机械、设备、工具、人员等数据都能与数字孪生模型无缝关联,进而提高制造的敏捷度。
虚拟调试技术是指把虚拟世界的产线模型与物理世界的真实控制设备进行连接,目的是对复杂生产系统进行功能测试。虚拟调试系统可以分为软件在环和硬件在环两类环境。一个典型的虚拟调试,需要规划好生产线的布局、设备资源,并验证布局、优化机器的动作流程,进行加工路径与工艺参数的工艺仿真分析,对机器人或机床设备编程验证,接入机电讯号并与电器行为同时调试验证,包括传感器、阀门、PLC程序和HMI软件等。
可视化技术是利用计算机图形学和图像处理技术,将数据转换成图形或图像在屏幕上显示出来,并进行交互处理的理论、方法和技术。例如,在数据分析和统计领域,可通过柱状图、折线图、散点图等图表形式展现数据之间的关系和趋势;在科学与工程领域,通过动态3D可视化地呈现计算结果,帮助人们直观理解复杂物理和数学的特点与规律;在商业和金融领域,通过将市场趋势、产品销售、客户信息等数据可视化,帮助企业更好地理解和分析各种数据。目前正在飞速发展的AR/VR/MR技术也与可视化技术有交叉,是可视化显示方面的一项支撑技术。
除了上述技术,大数据、云计算、人工智能等技术也是数字孪生的关键使能技术。大数据有助于使用者快速处理数字孪生平台上的模型和数据,进而释放数据背后所隐藏的价值和信息;云计算有助于数字孪生平台的部署,从而实现计算资源便捷、按需、灵活使用;人工智能可从感知、认知、学习和适应等方面解决数字孪生平台应用时的数据采集、模型构建与迭代等挑战。
需要指出的是,这些关键使能技术是数字孪生成功应用的重要保障,反过来,数字孪生的成功应用,又促进了这些关键使能技术的进一步发展。近年来,为了满足数字孪生的应用需求,以GE、西门子、PTC、Ansys、罗克韦尔自动化、AVEVA、Altair、微软、IBM、达索系统、Maplesoft、Bentley等为代表的国际知名供应商,基于自身使能技术,推出了构建数字孪生应用的关键工具。同时,由于各个行业在发展过程中逐步形成了适用于自身发展的使能技术,为了加速数字孪生应用的成熟并扩展到不同行业企业的垂直领域,越来越多的供应商选择通过与多家供应商展开合作,提供数字孪生所需要的完整解决方案。
◉ PTC与罗克韦尔自动化、Ansys展开合作,将Ansys的仿真能力、罗克韦尔的工业自动化硬件设备被融入到了PTC的物联网框架之下,实现了数字孪生能力的融合与贯通。
◉ 西门子与英伟达建立合作伙伴关系,通过连接开放式数字业务平台Xcelerator与3D设计和协作平台Omniverse,形成数字与现实世界精准映射的数字孪生。
◉ Ansys将扩展与微软的合作,包括连接到物联网的数字孪生、自动驾驶和飞行系统开发、以及使用仿真数据训练人工智能/机器学(AI/ML)系统。
◉ 达索系统与IBM为实现可持续发展目标并达成业务连续性,决定将3DEXPERIENCE平台和数字孪生体验,与资产管理、资源优化、环境风险管理和环境、社会和公司治理(ESG)解决方案相结合。
◉ 亚马逊和西门子合作,将IoT TwinMaker与西门子Xcelerator解决方案集成在一起,允许工业用户利用云服务,设计和模拟数字孪生。
三、典型的数字孪生应用案例
随着基础理论的完善,关键核心技术瓶颈的不断突破,数字孪生应用表现为从最初的单点探索应用转向行业全生命周期的全面渗透,应用价值得到进一步释放,从航空航天、工业设施、发电厂等高价值用例转向汽车、船舶、建筑、医疗等与人们日常需求息息相关的行业。
案例一:特斯拉借助数字孪生占据行业领先地位【4】【5】
特斯拉是数字孪生技术产业化应用的先行者。2011年,特斯拉成立设计工作室(Design Studio),赋予其超级工厂数字孪生能力。通过以降维打击的方式,将原本NASA用于航天军工这种高端领域的数字孪生技术应用到民用汽车领域,重构了汽车的设计、生产、使用体验,确定了特斯拉的江湖地位。
特斯拉在电动汽车制造中应用了数字孪生技术。特斯拉拥有其制造的每辆汽车的数字孪生,用于在汽车和工厂之间不断交换数据。特斯拉通过这些数字孪生,不断调整和测试产品性能。在自动驾驶方面,特斯拉创建驾驶员及其行为、汽车及其行为方式、道路上的其他汽车和道路本身的数字孪生。通过捕获大量数据和深入分析这些数据,有助于解释自动驾驶中人、车的复杂行为,实现车辆的自动驾驶。
在2021年上海车展特斯拉车主维权事件中,特斯拉分别向市场监管部门、维权的张女士发送了整理为Excel表格的48页6697组后台服务器数据,详细记录了车主在事故前30分钟的车辆状况和驾驶动作。
特斯拉的用户不仅可以通过特斯拉的数字孪生追溯设备的过去和当前使用状况,在使用过程中,特斯拉汽车的功能似乎越来越智能,特斯拉汽车似乎越来越懂你。特斯拉通过数字孪生给用户提供了一种“持续智能”,可以持续适配用户、持续优化。特斯拉通过这种服务,每年可以从每辆特斯拉获得超过1200美元的收入。2018年,日本船舶技术研究协会在日本最大私人基金会之一的日本财团 (Nippon Foundation)支持下启动了“船体结构高精度数字孪生模型研发”项目,联合6家造船企业以及大学、航运公司、国家海事研究机构和日本船级社等单位共同参与,共同研究数字孪生技术,旨在把船舶海上航行时船体状态在网络空间再现,提高船舶安全性。
通过创建一个船舶的网络物理系统,包含现实世界的信息,可以实现利用船舶结构数字模型同化船上测量数据,高精度地评估船舶的健康状况。船上测量包括遇到波浪的信息、船体张力和船舶在波浪中的运动。
该项目由监测、仿真、完整性评估三个要素组成。其中,监测是使用数据同化方法来开发从有限的测量中评估船体所有零部件的结构响应的技术。在现代船舶试验和船上测量的基础上,发展了能够高效、准确地再现真实世界现象的仿真方法,并得到了验证。
该项目的技术验证是通过在纳什维尔海洋研究所的实际海洋模型盆地的模型转移试验进行的。模型船上安装了数以百计的光纤,如应变测试仪和压力传感器,这为创建数字孪生系统提供了必要的数据。
海上经营者、陆地管理者和船舶设计师可以通过网络再现和共享实际航道中正在行驶的船只。通过基于网络船舶的统计推断方法对船舶进行客观的整体评价,有助于提高海上运输的整体安全水平。
精确的船体结构数字孪生甚至可以从陆地上进行监测,这将使远程和自动操作成为可能。船舶在未来海况下的状态可以被准确预测,并有可能选择更安全的航线和策略。根据数字孪生获得的精确载荷进行船舶设计和管理,还可以解决温室气体的节能再循环和船舶寿命等问题。该项目最终目标是通过基于实时数字船体状态信息的先进数据分析技术,提高船舶的安全性和效率。免责声明:
本文转载自【数字化企业】,版权归原作者所有,如若侵权请联系我们进行删除!
易知微以自主研发的EasyV数字孪生可视化搭建平台为核心,结合WebGL、3D游戏引擎、GIS、BIM、CIM等技术,协同各个行业的生态伙伴,围绕着数字孪生技术、数字驾驶舱和行业应用,共同建设数字增强世界,帮助客户实现数字化管理,加速数字化转型。
易知微已经为3000+ 客户提供数字孪生可视化平台和应用,覆盖智慧楼宇、智慧园区、智慧城市、数字政府、数字乡村、智慧文旅、工业互联网等众多行业领域,包括国家电网、移动云、中交建、中铁建、融创、云上贵州、厦门象屿、天津火箭、上海电视台、金华防汛大脑、良渚古城遗址公园、李宁、浙江大学等典型案例!