1、数据准备
本文数据分析将基于前期准备的中药材知识图谱数据。特别的,本次在中药材知识图谱中增加了“归经”关系,数据已经更新在github中。
开源数据地址:
https://github.com/fengxi177/Knowlegde_Graph_TCM https://gitee.com/fengxi177/Knowlegde_Graph_TCM
2、基于pyecharts的知识图谱可视化
本文将基于pyecharts框架,对中药材知识图谱进行“力导图”和“环形分布”可视化,同时,对中药材地理分布、来源和别名关系进行分析与可视化。
2.1 pyecharts简介
Apache ECharts 是一个由百度开源的数据可视化工具,有很多常见图表设计的api,操作简洁方便,如关系图、地图、折线图、散点图等可视化api。
api详细可访问:
https://github.com/pyecharts/pyecharts。
2.2 中药材知识图谱可视化
前文自顶向下构建中药知识图谱初探已经介绍了中药材知识图谱的构建和neo4j可视化过程,接下来将对该图谱数据利用pyecharts进行可视化。
pyecharts关系图api和具体参数配置可参考示例文档:
https://gallery.pyecharts.org/#/Graph/README。
说明: 本文所有数据分析结果仅限于所收集数据情况。
少量数据的中药知识图谱-环形图
少量数据的中药知识图谱-环形图(部分节点展示图1)
少量数据的中药知识图谱-环形图(部分节点展示图2)
少量数据的中药知识图谱-力导图
较多数据的知识图谱可视化效果
2.3 中药材知识图谱分析结果可视化
(1)中药材分布情况可视化
(2)中药材来源数据可视化
(3)中药材别名数据可视化
经数据分析发现:有别名的中药材占比:0.7591,没有别名的中药材占比:0.2409。
中药材别名数量与对应中药材数量关系图如下。
别名最多的中药是“地锦草”,有57个别名,其关系图如下。
2.4 中药术语知识图谱可视化
中医术语知识为层次结构,其树形图展示如下。
环形树图(部分节点展开)
自底向上的树图(部分节点展开)
3、其他可视化工具
对于知识图谱数据可视化,还可利用D3.js创建更复杂场景的可视化结果。同时,可利用共现网络分析工具cytoscape、gephi等探索更多的数据价值。
4、总结
本文基于pyecharts对已有知识图谱进行了数据分析与可视化展示。
本文为二次转载,如有侵权请联系删除。
文章
11.88W+人气
19粉丝
1关注
©Copyrights 2016-2022 杭州易知微科技有限公司 浙ICP备2021017017号-3 浙公网安备33011002011932号
互联网信息服务业务 合字B2-20220090