0.环境说明
python3.8.5+pytorch
1. 模型结构可视化
1.1 netron
step1:在虚拟环境中安装netron
pip install netron
1
step2: 在虚拟环境中打开netron
step3:浏览器中输入地址:http://localhost:8080/
step4:选择保存的模型xxx.pt
1.2 使用tensorboard
step1:安装tensorboard,最简单的方式就是直接安装一个tensorflow
pip install tensorflow==1.15.0 -i https://mirrors.aliyun.com/pypi/simple
1
step2:代码中设置
from torch.utils.tensorboard import SummaryWriter
1
'''设置在模型构建后'''
writer = SummaryWriter(log_dir='./output/log')
writer.add_graph(model, torch.empty(10, 4)) #注意这里要结合你具体的训练样本,10是batch_szie可任意,4是训练样本的特征长度需要和训练样本一致
1
2
3
'''设置在反向传播过程中,记录loss和acc'''
# 可视化输出
writer.add_scalar('loss', _loss, train_step)
writer.add_scalar('acc', _acc, train_step)
train_step += 1
1
2
3
4
5
'''train损失和test损失共同打印在一张图上,add_scalars注意s'''
writer.add_scalars('epoch_loss',{'train':train_loss,'test':test_loss},epoch)
1
2
step3:
进入cmd命令行;
切换当前磁盘到events文件所在的磁盘;
确保events文件所在的路径没有中文字符串;
输入命令:tensorboard --logdir C:\Users\...\output\log
浏览器中输入http://localhost:6006/#images
2. 训练过程可视化
2.1 tensorboard
上文已经提及,只需要在训练过程中add即可。
'''设置在反向传播过程中,记录loss和acc'''
# 可视化输出
writer.add_scalar('loss', _loss, train_step)
writer.add_scalar('acc', _acc, train_step)
train_step += 1
1
2
3
4
5
2.2 普通代码
if batch_idx % 100 == 0:
print(f"Train Epoch:{epoch} [{batch_idx*len(data)}/{len(train_loader.dataset)} ({100.*batch_idx/len(train_loader):.0f}%)]\tloss:{loss.item():.6f}")
1
2
效果图:
3. 特征提取可视化
需要tensorboard配合hook,直接上代码。
model: LeNet
data: MNIST
import enum
import sys
import torch
from torch import nn
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from myutils.metrics import Acc_Score #自己写的一个计算准确度的类,继承Module
class LeNet_BN(nn.Module):
def __init__(self,in_chanel) -> None:
super(LeNet_BN,self).__init__()
self.feature_hook_img = {}
self.features = nn.Sequential(
nn.Conv2d(in_chanel, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid())
self.classifi = nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
nn.Linear(84, 10))
def forward(self,X):
X = self.features(X)# 特征提取与分类需要分开
X = self.classifi(X)
return X
def add_hooks(self):#可视化钩子
def create_hook_fn(idx):
def hook_fn(model,input,output):
self.feature_hook_img[idx]=output.cpu()
return hook_fn
for _idx,_layer in enumerate(self.features):
_layer.register_forward_hook(create_hook_fn(_idx))
def add_image_summary(self,writer,step,prefix=None):
if len(self.feature_hook_img)==0:
return
if prefix is None:
prefix='layer'
else:
prefix = f"{prefix}_layer"
for _k in self.feature_hook_img:# 包含原始图像
_v = self.feature_hook_img[_k][0:1,...]# 只获取第一张图像
_v = torch.permute(_v,(1,0,2,3))#(1,c,h,w)->(c,1,h,w)# 交换通道,展示每个维度的提取的图像特征
writer.add_images(f"{prefix}_{_k}",_v,step)
if __name__=='__main__':
# 加载数据
# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
tsf = transforms.Compose([transforms.ToTensor()])
train_data= datasets.MNIST(root='dataset\mnist_train',train=True,transform=tsf,download=True)
train_data_loader = DataLoader(train_data,batch_size=32,shuffle=True)
test_data = datasets.MNIST(root='dataset\mnist_test',train=False,transform=tsf,download=True)
test_data_loader = DataLoader(test_data,batch_size=32,shuffle=32)
model = LeNet_BN(1)
model.add_hooks()
lr=1e-2
epochs = 10
loss_f = torch.nn.CrossEntropyLoss()
acc_f = Acc_Score()
opt = torch.optim.SGD(model.parameters(),lr)
writer = SummaryWriter(log_dir='./output/log')
writer.add_graph(model,torch.empty(10,1,28,28))
for epoch in range(epochs):
for idx,data in enumerate(train_data_loader):
X,y = data
y = y.to(torch.long)
# 前向传播
y_pred = model(X)
train_loss = loss_f(y_pred,y)
train_acc = acc_f(y_pred,y)
# 反向传播
opt.zero_grad()
train_loss.backward()
opt.step()
if (idx+1)%100==0:
print(f"epoch:{epoch} |{(idx+1)*32}/{len(train_data)}({100.*(idx+1)*32/len(train_data):.2f}%)|\tloss:{train_loss.item():.3f}\tacc:{train_acc.item():.2f}")
model.add_image_summary(writer,epoch,'train')# 添加本次训练
test_loss=0
test_acc=0
test_numbers = len(test_data)/32
for data in test_data_loader:
model.eval()
X,y = data
y=y.to(torch.long)
# print(y)
# y = y.to(torch.long)
y_pred = model(X)
test_loss += loss_f(y_pred,y).item()
test_acc += acc_f(y_pred,y).item()
test_loss = test_loss/test_numbers
test_acc = test_acc/test_numbers
print('test res:')
print(f"epoch:{epoch} \tloss:{test_loss:.3f}\tacc:{test_acc:.2f}")
print('-'*80)
writer.add_scalars('epoch_loss',{'train':train_loss.item(),'test':test_loss},epoch)
writer.add_scalars('epoch_acc',{'train':train_acc.item(),'test':test_acc},epoch)
writer.close()# 关闭
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/qq_42911863/article/details/126160153
文章
10.52W+人气
19粉丝
1关注
©Copyrights 2016-2022 杭州易知微科技有限公司 浙ICP备2021017017号-3 浙公网安备33011002011932号
互联网信息服务业务 合字B2-20220090